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Abstract
We consider dynamical systems with discrete time (maps) that possess one or
more integrals depending upon parameters. We show that integrals can be used
to replace parameters in the original map so as to construct a different map
with different integrals. We also highlight a process of reparametrization that
can be used to increase the number of parameters in the original map prior to
using integrals to replace them. Properties of the original map and the new
map are compared. The theory is motivated by, and illustrated with, examples
of a three-dimensional trace map and some four-dimensional maps previously
shown to be integrable.

PACS numbers: 05.45.-a, 02.30.Ik, 02.30.Hq

1. Introduction

Dynamical systems come in two kinds: continuous or discrete. We will restrict our
discussion in this paper to finite-dimensional systems. Continuous dynamical systems
(ordinary differential equations) have been studied since the time of Newton, and they come
in a number of different classes, each with their own characteristic properties [11].

In recent years much effort has been devoted to finding discrete analogues of the
various classes of ODEs. This has resulted in the discovery and study of integrable
mappings [2, 13, 14, 16, 17], discrete Painleve equations [4], continuous symmetries of
difference equations [6, 18, 22], etc. (Note that there has also been much work on preserving
properties such as being symplectic, or divergence-free, or possession of integrals or
symmetries in numerical integration algorithms [12].)

Many dynamical systems that are of interest, either for theoretical or for practical reasons,
possess integrals (i.e. conserved quantities). Possible examples of such integrals are energy,
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momentum, angular momentum, but there are many other possibilities. Many of these systems
with integrals also contain one or more parameters, i.e. they occur in l-parameter families,
where some or all of the integrals may depend on the parameters.

In this paper we will focus on discrete-time dynamical systems (also called maps or
mappings). We hope to treat the case of continuous-time dynamical systems (i.e. ordinary
differential equations) in a future paper.

This then is the setting we are interested in: l-parameter families of discrete dynamical
systems with j first integrals. What we will show in this paper is that parameters and integrals
are, in a sense, interchangeable, i.e. we will show how from a map L : x �→ x′, x ∈ R

n, with
parameter K and integral I (x) we can construct another map L̃ with parameter I and integral
K(x) (under some mild technical conditions).

We will generalize this basic idea to interchanging p parameters and integrals, and also
show how in the process the number of parameters in the map may be increased, such that the
new map L̃ contains the old one as a special case. We will also investigate to what extent other
properties of L, such as volume-preservation, symmetries and time-reversal symmetries, carry
over to the new map L̃. This paper is an extension to higher dimensions of [7,8] which studied
two-dimensional maps with one biquadratic integral. In the latter papers, it was shown that
application of these ideas can, for example, show how to obtain the 18-parameter QRT family
of integrable maps [16, 17] from a nine-parameter family of McMillan-like maps.

The outline of this paper is as follows: in section 2 we present three motivating examples.
They all illustrate the interchange of a single parameter and an integral, a process we call
replacement. The second and third examples also illustrate an increase in the number of
parameters, a process we call reparametrization. In section 3 we present a general theorem,
of which the examples of section 2 are a special case. In section 4 we then give two additional
examples, with replacement of two parameters, as a further illustration of the theorem, before
concluding in section 5.

2. Two motivating examples of 3D and 4D maps illustrating replacement and
reparametrization

Example 1. Consider the following three-dimensional map (this example is a rescaling of the
so-called Fibonacci trace map [19, 20]):

L1 : x ′ = y

y ′ = z

z′ = −x − yz

K

(1)

where K is an arbitrary parameter. The map L1 has the following properties:

• L1 has an integral, i.e.

I (x ′, y ′, z′,K) = I (x, y, z,K) (2)

where

I (x, y, z,K) = K(x2 + y2 + z2) + xyz (3)

• L1 is volume preserving but orientation-reversing, i.e. det dL1 = −1,



Interchanging parameters and integrals in dynamical systems: the mapping case 2311

• L1 is reversible3, i.e. there exists a reversing symmetry G such that G ◦L1 ◦G−1 = L−1
1 ,

where
G : x ′ = z

y ′ = y

z′ = x.

(4)

Notice that I is linear in K and from (2)

I (x, y, z,K) = 0 ⇒ I (x ′, y ′, z′,K) = 0. (5)

The left-hand side of (5) together with (3) can be used to solve for K as a function of x, y and
z, i.e. we get K = k(x, y, z), where

k(x, y, z) = − xyz

x2 + y2 + z2
(6)

and it follows thatL1 with the replacementK = k satisfies k(x ′, y ′, z′) = k(x, y, z). Explicitly,
L1 with the replacement K = k yields the map

L̃1 : x ′ = y

y ′ = z

z′ = −x − yz

k(x, y, z)
= y2 + z2

x
.

(7)

The map L̃1 has the following properties:

• L̃1 has an integral,

k(x, y, z) = − xyz

x2 + y2 + z2
(8)

which, as indicated above, follows from (5).
• L̃1 is measure preserving and orientation-reversing (or anti-measure-preserving), which

means [21]

det dL̃1 = − ρ̃(x, y, z)

ρ̃(x ′, y ′, z′)
(9)

where the so-called density ρ̃ is given by

ρ̃(x, y, z) = 1

x2 + y2 + z2
. (10)

Note for future reference that ρ̃(x, y, z) = [
∂I
∂K

]−1
.

• L̃1 has the symmetry S̃, i.e. S̃ ◦ L̃1 ◦ S̃−1 = L̃1, where

S̃ : x ′ = −x

y ′ = −y

z′ = −z.

(11)

Note that L1 does not have this symmetry.
• L̃1 is reversible, where a reversing symmetry is

G̃ : x ′ = z

y ′ = y

z′ = x.

(12)

Note that G̃ = G.
3 L1 also has some k-symmetries [19, 20], which we disregard in this paper.
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Example 2. The map,

L2 : x ′ = y

y ′ = z

z′ = −x − yz

a0 + a1K

(13)

has the following integral

I (x, y, z,K) = (a0 + a1K)(x2 + y2 + z2) + xyz + b0 + b1K. (14)

The map L2 and integral (14) can clearly be obtained from L1 of example 1 and its integral (3)
by reparametrizing K → a0 + a1K and I → I + b0 + b1K . Again, for I of (14) it follows that

I (x, y, z,K) = 0 ⇒ I (x ′, y ′, z′,K) = 0, (15)

where primes denote images under L2. Since I of (14) is linear in K , the left-hand side of (15)
can be used to solve for K = k(x, y, z), i.e.

k(x, y, z) = −xyz + a0(x
2 + y2 + z2) + b0

a1(x2 + y2 + z2) + b1
(16)

and it follows that L2 with the replacement K = k satisfies k(x ′, y ′, z′) = k(x, y, z). This
new map is given by

L̃2 : x ′ = y

y ′ = z

z′ = −x +
yz[a1(x

2 + y2 + z2) + b1]

a1(xyz + b0) − a0b1
.

(17)

The map L̃2 has the following properties:

• L̃2 has, by construction, the integral k(x, y, z) given by (16).
• L̃2 is (anti-) measure preserving with density

ρ̃(x, y, z) = 1

a1(x2 + y2 + z2) + b1
(18)

noting that ρ̃(x, y, z) = [
∂I
∂K

]−1
for I of (14).

• L̃2 is reversible, where the reversing symmetry is

G̃ : x ′ = z

y ′ = y

z′ = x.

(19)

Notice that in example 1 we began with a map L1, depending on one parameter,
and replacement yielded L̃1, which contains no parameter. In example 2 we first used a
reparametrization ofL1 to introduce an additional four parameters intoL2 and its integral (14).
This ensures that L̃2 of (17) represents a four-parameter family of mappings, which includes
L̃1 of example 1 as a special case (a0 = b0 = b1 = 0, a1 = 1). Significantly, L̃2 also includes
the original L1 as a special case if we take a0 = K , a1 = 0 in (17) which corresponds in (14)
to trivially shifting the value of the original integral (3). Hence we have been able to embed
L1 in a larger family of measure-preserving and reversible 3D maps with an integral.
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Example 3. The following four-dimensional discrete KdV map is given in [4]

L3 : w′ = y

x ′ = z

y ′ = x + K

[
1

(1 + y)
− 1

(1 + z)

]

z′ = −w − x + K

[
1

(1 + z)
− 1

(1 − y − z)

] (20)

where K is an arbitrary parameter. The map L3 has the following properties:

• L3 has two integrals, i.e.

I1(w, x, y, z,K) = 2w2 + 2wx + 2x2 − (w + 1)(w + 2x)y − (w + 1)(w − 2)y2

+ (w + x − 1)(x − w)z − (w + x + 2)(w + x − 1)z2

− 2(w + 1)(w + x − 1)zy + 3(wy + wz + xz)K (21)

I2(w, x, y, z,K) = wx − (w + 1)(x + 1)(w + x − 1)[(1 + z)y2 + (y + 1)z2 + zy]

+ (x + 1)w2 + (w + 1)x2 + [(2w + 3wx + w2 + 2x + x2 − 1)yz

−wx − w2 − x2 + (x + 1)(2w + x)y + (w + 1)(w + x − 1)y2

+ (w + 1)(w + 2x)z + (x + 1)(w + x − 1)z2]K

− (2wy + wz + xy + 2xz)K2 (22)

• L3 is volume preserving,
• L3 is reversible, with reversing symmetry given by

G : w′ = z

x ′ = y

y ′ = x

z′ = w.

(23)

Reparametrizing the parameter in (20) via K → a0 + a1K and reparametrizing (21) via
I1 → I1 + (b0 + b1K), it follows immediately that the map

L̂3 : w′ = y

x ′ = z

y ′ = x + (a0 + a1K)

[
1

(1 + y)
− 1

(1 + z)

]

z′ = −w − x + (a0 + a1K)

[
1

(1 + z)
− 1

(1 − y − z)

] (24)

possesses the integrals

Î1(w, x, y, z,K) = 2w2 + 2wx + 2x2 − (w + 1)(w + 2x)y − (w + 1)(w − 2)y2

+ (w + x − 1)(x − w)z − (w + x + 2)(w + x − 1)z2

− 2(w + 1)(w + x − 1)zy + 3(wy + wz + xz)(a0 + a1K)

+ (b0 + b1K) (25)

Î2(w, x, y, z,K) = wx − (w + 1)(x + 1)(w + x − 1)[(1 + z)y2 + (y + 1)z2 + zy]

+ (x + 1)w2 + (w + 1)x2 + [(2w + 3wx + w2 + 2x + x2 − 1)yz

−wx − w2 − x2 + (x + 1)(2w + x)y + (w + 1)(w + x − 1)y2

+ (w + 1)(w + 2x)z + (x + 1)(w + x − 1)z2](a0 + a1K)

− (2wy + wz + xy + 2xz)(a0 + a1K)2. (26)
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Since Î1 is linear in K , we can solve Î1(w, x, y, z,K) = 0 for K = k(w, x, y, z), i.e.

k(w, x, y, z) = −[2w2 + 2wx + 2x2 − (w + 1)(w + 2x)y − (w + 1)(w − 2)y2

+ (w + x − 1)(x − w)z − (w + x + 2)(w + x − 1)z2

− 2(w + 1)(w + x − 1)zy+

3a0(wy + wz + xz) + b0] / [3a1(wy + wz + xz) + b1].

(27)

Define the map L̃3 by substituting (27) into (24)

L̃3 : w′ = y

x ′ = z

y ′ = x + {a0 − a1[2w2 + 2wx + 2x2 − (w + 1)(w + 2x)y − (w + 1)(w − 2)y2

+ (w + x − 1)(x − w)z − (w + x + 2)(w + x − 1)z2

− 2(w + 1)(w + x − 1)zy + 3a0(wy + wz + xz)

+ b0]/[3a1(wy + wz + xz) + b1]} (z − y) / [(1 + y)(1 + z)]

z′ = −w − x − {a0 − a1[2w2 + 2wx + 2x2 − (w + 1)(w + 2x)y − (w + 1)(w − 2)y2

+ (w + x − 1)(x − w)z − (w + x + 2)(w + x − 1)z2

− 2(w + 1)(w + x − 1)zy + 3a0(wy + wz + xz)

+ b0]/[3a1(wy + wz + xz) + b1]} (y + 2z) / [(1 + z)(1 − y − z)]. (28)

The map L̃3 has the following properties:

• L̃3 has two integrals,

Ĩ1(w, x, y, z) = −[2w2 + 2wx + 2x2 − (w + 1)(w + 2x)y − (w + 1)(w − 2)y2

+ (w + x − 1)(x − w)z − (w + x + 2)(w + x − 1)z2

− 2(w + 1)(w + x − 1)zy + 3a0(wy + wz + xz)

+ b0] / [3a1(wy + wz + xz) + b1] (29)

Ĩ2(w, x, y, z) = wx − (w + 1)(x + 1)(w + x − 1)[(1 + z)y2 + (y + 1)z2 + zy]

+ (x + 1)w2 + (w + 1)x2 + [(2w + 3wx + w2 + 2x + x2 − 1)yz

−wx − w2 − x2 + (x + 1)(2w + x)y + (w + 1)(w + x − 1)y2

+ (w + 1)(w + 2x)z + (x + 1)(w + x − 1)z2](a0 + a1k)

− (2wy + wz + xy + 2xz)(a0 + a1k)
2 (30)

noting that Ĩ1 = k(w, x, y, z) and Ĩ2(w, x, y, z) = Î2(w, x, y, z, k(w, x, y, z)),
• L̃3 is measure preserving with

ρ̃(w, x, y, z) =
[
∂Î1

∂K

]−1

= 1

3a1(wy + wz + xz) + b1
. (31)

• L̃3 is reversible, with reversing symmetry given by

G̃ : w′ = z

x ′ = y

y ′ = x

z′ = w.

(32)

The dynamics of a particular example of the map L̃3 of (28) is given in figure 1. Embedded in
the four-parameter map L̃3 is the original one-parameter mapL3 of (20) which arises from (28)
with the choice a1 = 0 and identification of a0 as the parameter.
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Figure 1. Two-dimensional projections of the phase portrait of L̃3 of (28) on the square
[−0.5, 0.4] × [−0.5, 0.4] are shown, with (a0, a1, b0, b1) = (1, 2.1, 3, 4.2) and initial conditions
(w0, x0, y0, z0) = (0.21, 0.2, 0.2, 0.2). The projections are [wx,wy,wz] across from the top
left-hand corner and [xy, xz, yz] across from the bottom left-hand corner.

3. Theoretical basis for replacement and reparametrization

In the preceding examples, we have seen that new 3D and 4D maps have been created from
existing ones by using one of the original map’s integrals to eliminate or replace one parameter
from it. In examples 2 and 3 we have prepared an original map using reparametrization prior
to the replacement procedure. In this section, we generalize these procedures and give a
theoretical justification for the observed properties of the new maps.

3.1. Replacement

Consider a map L : x �→ x′ where x := (x1, . . . , xn) ∈ R
n which depends on l parameters

K := (K1, . . . , Kl) so:

L : x �→ x′ : = (f1(x,K), . . . , fn(x,K)). (33)

Suppose L possesses j functionally-independent integrals I1, . . . , Ij dependent on the
parameters so that

Ii (x
′,K) = Ii (x,K) i = 1, . . . , j. (34)

We assume that there exists 1 � p � j such that the p equations

Ii (x,K) = 0 i = 1, . . . , p (35)

uniquely determine K1, . . . , Kp via

Ki = ki(x,Kp+1, . . . , Kl) i = 1, . . . , p (36)

where ki are smooth functions. The general condition for (35) to be solvable (implicitly or
explicitly) for Ki , i = 1, . . . , p, will not be discussed here. In the examples of the present
paper, equations (35) will always be affine in the parameters K1, . . . , Kp so that the functions



2316 J A G Roberts et al

ki can be found explicitly when a certain determinant is non-vanishing (which is generically
true).

We create a new map L̃ of R
n from L by replacement of the parameters K1, . . . , Kp

in (33) by the corresponding functions k1, . . . , kp of (36). That is, using K̂ := (Kp+1, . . . , Kl)

for the parameters not replaced and k := (k1, . . . , kp) for the vector of functions determined
by solving (35), we have

L̃ : x �→ x′ : = (f̃1(x, K̂), . . . , f̃n(x, K̂)) = (f1(x,k, K̂), . . . , fn(x,k, K̂)) (37)

It is clear that replacement in L of the ‘distinguished’ parameters K1, . . . , Kp solved
from (35) means that L̃ depends on l − p parameters (versus the l parameters in L).

The theorem below relates properties of L to those of L̃. It turns out to be instructive
to compare L and L̃ by introducing an intermediate map Lext of the extended space R

p+n =
(K̄,x) := (K1, . . . , Kp, x1, . . . , xn) obtained from adding the distinguished parameters to
the existing phase space so that

Lext : y : = (K̄,x) �→ y′ : = (K̄ ′,x′) : = (K̄, f1(x,K), . . . , fn(x,K)). (38)

Note that Lext acts as the identity map in its first p components and as L in the remaining n

components with the remaining (undistinguished) parameters Kp+1, . . . , Kl remaining in Lext

as standard parameters. It follows from (34) that Lext has the j integrals

Ii(x, K̄, K̂) i = 1, . . . , j. (39)

Consequently, Lext induces a map on the intersections of the level sets Ii = ci (i = 1, . . . j ),
where ci are determined from initial conditions. In particular, for arbitrary x = (x1, . . . , xn),
suppose we choose initial conditions of K̄ = (K1, . . . , Kp) so as to lie in the following set in
the extended (K̄,x) space

I0 :=
p⋂
i=1

{ Ii(x, K̄, K̂) = 0 }. (40)

Then we remain in this set under iteration of Lext with the heights Ii = ci (i = p + 1, . . . , j)
also fixed at their initial values. Note by assumption (cf (35) and (36)), I0 is well-defined and
equal to the intersection of the graphs of the p functions ki(x1, . . . , xn,Kp+1, . . . , Kl) defined
by (35).

By construction, the map L̃ of (37) is, geometrically, simply the projection onto the R
n

space (x1, . . . , xn) of the restriction of Lext to its invariant set I0, utilizing (36) to replace for
Ki (i = 1, . . . , p) in the expressions for x ′

i in Lext of (38). We denote this relationship by

L̃ = πx (Lext | I0). (41)

Using the projection πx means that to obtain L̃we discard the firstp mapping equations of (38)
when Lext is restricted to I0.

Theorem 1. If the maps L and L̃ are defined as above, then:

(i) L̃ has j integrals:

Ĩi (x, K̂) = ki(x, K̂) i = 1, . . . , p

Ĩi(x, K̂) = Ii(x,k, K̂) i = p + 1, . . . , j.

(ii) If L is (anti-) measure preserving with density ρ(x,K), then L̃ is also (anti-) measure
preserving with density

ρ̃(x, K̂) = ρ(x,k, K̂)

J
(42)
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where J := J (x, K̂) is the Jacobian determinant of the map (K1, . . . , Kp) �→
(I1, . . . , Ip) evaluated at (36) i.e.

J = ∂(I1, . . . , Ip)

∂(K1, . . . , Kp)

∣∣∣∣
(x,k,K̂)

. (43)

(iii) L̃ has a symmetry S̃ (i.e. S̃ ◦ L̃ = L̃ ◦ S̃), with S̃ derived from a map Sext of the extended
phase space if and only if:
(a) Sext preserves I0 of (40), whence S̃ = πx (Sext | I0); and
(b) Sext ◦ Lext − Lext ◦ Sext vanishes on I0.
In particular, if L has a symmetry S

S : x �→ x′ : = (s1(x,K), . . . , sn(x,K)) (44)

and S also satisfies

Ii(x,K) = 0 ⇒ (Ii ◦ S) (x,K) = 0 (45)

for i = 1, . . . , p, then L̃ has the symmetry S̃ where

S̃ : x �→ x′ : = (s1(x,k, K̂), . . . , sn(x,k, K̂)). (46)

(iv) L̃ has a reversing symmetry G̃ (i.e. G̃ ◦ L̃ ◦ G̃−1 = L̃−1), with G̃ derived from a map
Gext of the extended phase space if and only if:
(a) Gext preserves I0 of (40), whence G̃ = πx (Gext | I0); and
(b) Gext ◦ Lext − Lext−1 ◦ Gext vanishes on I0.

In particular, if L has a reversing symmetry G

G : x �→ x′ : = (g1(x,K), . . . , gn(x,K)) (47)

and G also satisfies

Ii(x,K) = 0 ⇒ (Ii ◦ G) (x,K) = 0 (48)

for i = 1, . . . , p, then L̃ is reversible with reversing symmetry G̃ where

G̃ : x �→ x′ : = (g1(x,k, K̂), . . . , gn(x,k, K̂)). (49)

Proof. (i) By construction, Lext of (38) also has the trivial integrals K1, . . . , Kp. When
we choose Ki = ki (i = 1, . . . , p) to lie on I0, it follows that the values of ki are
preserved by Lext and hence L̃. This accounts for Ĩi = ki (i = 1, . . . , p). The remaining
integrals Ĩi (i = p + 1, . . . , j) of L are just the remaining integrals (39) of Lext with
Ki = ki (i = 1, . . . , p).
(ii) Since L is (anti-) measure-preserving, we have for V ⊂ R

n∫
V

ρ(x,K) dx1 . . . dxn = (−)

∫
L(V )

ρ(x′,K) dx ′
1 . . . dx

′
n. (50)

Clearly Lext is measure-preserving with density ρ via the obvious extension of (50) (with
U ⊂ R

n+p):∫
U

ρ(x,K) dK1 . . . dKp dx1 . . . dxn = (−)

∫
Lext (U)

ρ(x′,K) dK ′
1 . . . dK

′
p dx ′

1 . . . dx
′
n. (51)

Now consider a volume element W ⊂ R
n+p constructed in the following way. It has an

arbitrary projection W ∗ = dx1 . . . dxn onto the (x1, . . . , xn) coordinates but is bounded by I0

of (40) and

Iε :=
p⋂
i=1

{ Ii(x, K̄, K̂) = εi } (52)
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i.e. the intersection of the level sets (I1, . . . , Ip) = (ε1, . . . , εp), where εi are arbitrarily small
(the existence of Iε for any (x1, . . . , xn) is guaranteed by the implicit function theorem).
From (39), the image Lext (W) of this volume element will continue to have a face on I0 and
one on Iε . For each point of I0 inW , the relationship between the variation of Ii (i = 1, . . . , p)
to the adjacent level sets Iε and the variation of Ki (i = 1, . . . , p) is given by

εi = dIi =
p∑

k=1

∂Ii

∂Kk

∣∣∣∣
I0

dKk i = 1, . . . , p. (53)

In particular,
p∏
i=1

εi = dI1 . . . dIp = ∂(I1, . . . , Ip)

∂(K1, . . . , Kp)

∣∣∣∣
I0

dK1 . . . dKp. (54)

The Jacobian determinant evaluated on I0 in (54) can be denoted J (x, K̂) since (36) are used to
eliminate K1, . . . , Kp. Using the volume W in (51) together with (54) to replace dK1 . . . dKn

and its primed version, and taking the limit as εi → 0 leads to∫
W ∗

ρ(x,k, K̂)

J (x, K̂)
dx1 . . . dxn = (−)

∫
L̃(W ∗)

ρ(x′,k′, K̂)

J (x′, K̂)
dx ′

1 . . . dx
′
n. (55)

In (55), k′
1 = k1(x

′, K̂) etc is evaluated at the images of L̃. Since W ∗ is arbitrary, (55)
establishes the result in (ii) above.

(iii) From (41), L̃ is obtained from projection of the map Lext | I0 which is a map from
I0 to itself. If a symmetry S̃ of L̃ is derived from a map Sext of the extended phase space
(K1, . . . , Kp, x1, . . . , xn), then Sext must preserve the set I0 and, by definition, the following
is satisfied:

π(x1,...,xn) (S
ext | I0 ◦ Lext | I0) = π(x1,...,xn) (L

ext | I0 ◦ Sext | I0). (56)

By assumptions (35), (36), we can cancel the projection operators from both sides of (56) since
two points on I0 cannot share the same values of (x1, . . . , xn) but have different values for
(K1, . . . , Kp). Therefore, we have

(Sext ◦ Lext ) | I0 = (Lext ◦ Sext ) | I0 ⇒ Sext ◦ Lext − Lext ◦ Sext

= F(K1, . . . , Kp, x1, . . . , xn) (57)

where F : R
n+p �→ R

n+p vanishes on I0. If the original map L has a symmetry S that
satisfies (45) then clearly its extension Sext preserves I0. Furthermore, (57) is satisfied in this
case with F ≡ 0 since Lext and Sext both act as the identity on K1, . . . , Kp.

(iv) The details of the proof for reversing symmetries are exactly analogous to those for
symmetries and we omit the details. �

Example 1 of the previous section corresponds to application of the above result with L

given by L1 of (1). The number of parameters in L1 is l = 1 with K1 = K . The number of
integrals of L1 is j = 1 and since I of (3) is linear in K , we can solve I (x, y, z,K) = 0 for
K = k(x, y, z) (so p = 1). The fact that L̃1 of (7) has the symmetry S̃ of (11), whereas L1

does not, illustrates part (iii) of the theorem. For S̃ of (11), we have S̃ = πx (Sext | I0) with
I0 = {I (x, y, z,K) = 0} and I of (3). The map Sext is not unique and one can take

Sext :

K ′ = −K + f (I)

x ′ = −x

y ′ = −y

z′ = −z

(58)
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where f is an arbitrary function that satisfies f (0) = 0. The map Lext
1 corresponding to L1

of (1) is

Lext
1 :

K ′ = K

x ′ = y

y ′ = z

z′ = −x − yz

K

(59)

and one finds that

Sext ◦ Lext
1 − Lext

1 ◦ Sext =




0
0
0

yz( 1
K

+ 1
f (I)−K

)


 . (60)

The latter vanishes when I = 0, and since Sext also preserves this set, S̃ of (11) becomes a
symmetry of L̃1 of (7).

Example 1 illustrates the general result that the original map L of (33) and the converted
map L̃ of (37) need not share the same symmetries or reversing symmetries.

3.2. Reparametrization

Examples 2 and 3 of the previous section illustrate a reparametrization process that can be
applied prior to application of the replacement theorem above. This process increases the
number of parameters present in the original map L. In general it works as follows. Given
L of the form (33) satisfying (34) and assuming (35), (36), we reparametrize the parameters
K1, . . . , Kr , r � p using the affine transformation

RK :


K1

...

Kr


 �→


K ′

1
...

K ′
r


 := AK


 K1

...

Kp


 + b (61)

where AK is a r × p matrix and b is a r × 1 column vector. Note that we may be able to
reparametrize more parameters than just the distinguished ones if the integrals Ii, i = 1, . . . , p
are linear in more than p parameters (so there is some choice available as to which parameters
to make distinguished). We can also reparametrize integrals (34) of L according to:

RI :


 I1

...

Ip


 �→


 I ′

1
...

I ′
p


 := AI


 I1

...

Ip


 + C


 K1

...

Kp


 + d (62)

where AI and C are p×p matrices and d is a p×1 column vector. The replacement theorem
of the previous section can now be applied with

L → L ◦ Rk I → RI (I ◦ RK). (63)

In the examples seen in section 2, p = 1 but in the next section we will see an example
where we can take p = 1 or 2 in (61) and (62). In all the examples of this paper, AI will be
the p × p identity matrix.

It is clear that the process of reparametrization applied before replacement compensates for
the parameters removed from the map by the latter process. Furthermore, taking all the values
of the introduced parameters in AK to be zero in the new map L̃ obtained from replacement
will lead to a map equivalent to the original map L (since this is equivalent to there having
been no replacement in the first place).

We conclude this section with the following:
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Remarks.

(1) The curve-dependent McMillan maps of [7,8] are a special case of the above theory when
n = 2 and j = p = 1. In these papers the assumptions (35), (36) are called condition F

and the case where the integral I is nonlinear in the distinguished parameter K is treated.
(2) The idea of the measure-preservation result (ii) of the theorem is a discrete version

of the concept of integral invariants on integral submanifolds in ordinary differential
equations [9].

4. Examples of 4D maps with replacement of two parameters

In this section we provide two further illustrations of the results of section 3.

Example 4. The following map is a rescaling of the discrete sine–Gordon map [3, 14]:

L4 : w′ = x

x ′ = y

y ′ = z

z′ = pxz − b

w(p − cxz)

(64)

where b, c, and p are arbitrary parameters. It has the following properties:

• L4 has two integrals,

I1 = p

(
w

z
+

z

w

)
− b

(
1

wx
+

1

xy
+

1

yz

)
− c(wx + xy + yz)

I2 = p

(
w

x
+
x

y
+
y

z
+
z

y
+
x

w
+
y

x

)
− b

wz
− cwz (65)

• L4 is measure preserving, with

ρ(w, x, y, z) = 1

wxyz
(66)

• L4 has symmetry S, where

S : w′ = −w

x ′ = −x

y ′ = −y

z′ = −z

(67)

• L4 is reversible, with reversing symmetry given by

G : w′ = z

x ′ = y

y ′ = x

z′ = w.

(68)



Interchanging parameters and integrals in dynamical systems: the mapping case 2321

Reparametrizing the parameters, i.e. p → p0 + p1K , b → b0 + b1K , c → c0 + c1K and the
first integral I1 → I1 + f0 + f1K , we obtain the integrals

Î1(w, x, y, z,K) = (p0 + p1K)

(
w

z
+

z

w

)
− (b0 + b1K)

(
1

wx
+

1

xy
+

1

yz

)
− (c0 + c1K)(wx + xy + yz) + (f0 + f1K)

Î2(w, x, y, z,K) = (p0 + p1K)

(
w

x
+
x

y
+
y

z
+
z

y
+
x

w
+
y

x

)
− (b0 + b1K)

wz
(69)

− (c0 + c1K)wz.

The map preserving Î1 and Î2 is

L̂4 : w′ = x

x ′ = y

y ′ = z

z′ = (p0 + p1K)xz − (b0 + b1K)

w(p0 + p1K − (c0 + c1K)xz)
.

(70)

Using Î1(w, x, y, z,K) = 0 we can define a new integralK = k(w, x, y, z)which is preserved
by the map (70). Define the map L̃4 by

L̃4 : w′ = x

x ′ = y

y ′ = z

z′ = (p0 + p1k(w, x, y, z))xz − (b0 + b1k(w, x, y, z))

w(p0 + p1k(w, x, y, z) − (c0 + c1k(w, x, y, z))xz)
.

(71)

The map L̃4 has the following properties:

• L̃4 has two integrals,

Ĩ1 = k(w, x, y, z)

Ĩ2 = Î2(w, x, y, z, k(w, x, y, z))
(72)

• L̃4 is measure preserving, with

ρ̃(w, x, y, z) = 1

wxyz

[
∂Î1

∂K

]−1

(73)

where

∂Î1

∂K
= p1

(
w

z
+

z

w

)
− b1

(
1

wx
+

1

xy
+

1

yz

)
− c1(wx + xy + yz) + f1. (74)

• L̃4 has symmetry

S̃ : w′ = −w

x ′ = −x

y ′ = −y

z′ = −z

(75)
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• L̃4 is reversible, with reversing symmetry given by

G̃ : w′ = z

x ′ = y

y ′ = x

z′ = w.

(76)

All of these properties of L̃4 are in agreement with theorem 1.

Example 5. Consider the map L4 given in example 4. We observe that both the integrals (65)
are linear in p, b and c so there is the possibility to solve for any two of these parameters (i.e.
we have j = p = 2 in (34) and (36)).

We first reparametrize to introduce K1 and K2, i.e. the existing parameters now become
p → p0 + p1K1 + p2K2, b → b0 + b1K1 + b2K2, c → c0 + c1K1 + c2K2 and the integrals
become I1 → Î1 = I1 + f0 + f1K1 + f2K2 and I2 → Î2 = I2 + g0 + g1K1 + g2K2. The two
integrals Î1(w, x, y, z,K1,K2) and Î2(w, x, y, z,K1,K2) are preserved by

L̂5 : w′ = x

x ′ = y

y ′ = z

z′ = (p0 + p1K1 + p2K2)xz − (b0 + b1K1 + b2K2)

w(p0 + p1K1 + p2K2 − (c0 + c1K1 + c2K2)xz)
.

(77)

Setting Î1(w, x, y, z,K1,K2) = 0 and Î2(w, x, y, z,K1,K2) = 0 we can solve for K1 =
k1(w, x, y, z) and K2 = k2(w, x, y, z) since Î1 and Î2 are linear in K1 and K2. Define the map
L̃5 to be the map (77) with the replacements K1 = k1(w, x, y, z) and K2 = k2(w, x, y, z).
The map L̃5 has the following properties:

• L̃5 has two integrals

Ĩ1 = k1(w, x, y, z)

Ĩ2 = k2(w, x, y, z)
(78)

• L̃5 is measure preserving, with

ρ̃(w, x, y, z) = 1

wxyz
J−1 (79)

where

J : =
∣∣∣∣∣

∂Î1
∂K1

∂Î1
∂K2

∂Î2
∂K1

∂Î2
∂K2

∣∣∣∣∣ (80)

and

∂Î1

∂K1
= p1

(
w

z
+

z

w

)
− b1

(
1

wx
+

1

xy
+

1

yz

)
− c1(wx + xy + yz) + f1

∂Î1

∂K2
= p2

(
w

z
+

z

w

)
− b2

(
1

wx
+

1

xy
+

1

yz

)
− c2(wx + xy + yz) + f2

∂Î2

∂K1
= p1

(
w

x
+
x

y
+
y

z
+
z

y
+
x

w
+
y

x

)
− b1

wz
− c1wz + g1

∂Î2

∂K2
= p2

(
w

x
+
x

y
+
y

z
+
z

y
+
x

w
+
y

x

)
− b2

wz
− c2wz + g2.

(81)
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Figure 2. Two-dimensional projections of the phase portrait of L̃5 on the square [−1.5,−1] ×
[−1.5,−1] are shown, with (b0, b1, b2, c0, c1, c2, f0, f1, f2, g0, g1, g2, p0, p1, p2) =
(10, 8, 99, 1, 1, 8, 1, 4, 1, 9, 5, 3, 3, 1, 7) and initial conditions (w0, x0, y0, z0) =
(−1.33,−1.37,−1.3,−1.3). The projections are [wx,wy,wz] from the top left-hand
corner and [xy, xz, yz] from the bottom left-hand corner.

• L̃5 has symmetry S̃, where

S̃ : w′ = −w

x ′ = −x

y ′ = −y

z′ = −z

(82)

• L̃5 is reversible, with G̃ given by

G̃ : w′ = z

x ′ = y

y ′ = x

z′ = w.

(83)

The dynamics of a particular example of the map L̃5 is given in figure 2.

5. Concluding remarks

In this paper, we have illustrated how mappings that possess integrals dependent on parameters
can be used to construct other mappings with integrals. Via the processes of reparametrization
and replacement, the original mapping can be embedded in a larger family of maps with
integrals. This is interesting in the sense that a priori it seems non-trivial to embed a map with
integrals into a larger parameter family where the integrals are also embedded. The process
described here works in any number of dimensions.
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We close with the following remarks:

(1) A geometric understanding of the results presented here comes from considering Lext

of section 3 as a way of studying maps with integrals dependent on parameters. By
considering the projection πx of the dynamics of Lext on the invariant surfaces Ki = ci ,
i = 1, . . . , p, one obtains the dynamics of the original map L. The dynamics of the map
L̃ is simply the projection πx of the dynamics of Lext on the alternative invariant surfaces
Ii = ci , i = 1, . . . , p.

(2) The theorem of section 3 compares the properties of measure-preservation, possession of
symmetries and reversing symmetries betweenL and L̃. The mapsL3 andL4 of examples
3–5 have the additional properties of being symplectic and integrable. An open question
is whether, in general, L̃will also inherit such properties as symplecticity and integrability
from L.

(3) Our observation is that integrals of maps are often linear or affine in their parameters. This
means that the replacement process is relatively easy to manage. However, with additional
conditions, it should be possible to solve for parameters that occur in a nonlinear way
(cf [7, 8]). One can also imagine using nonlinear reparametrizations instead of the affine
ones presented in (62) and (61).

(4) A similar procedure of interchanging parameters and integrals can be applied to dynamical
systems with continuous time (i.e. ordinary differential equations). We hope to report on
this in the near future. Significantly, in the case of integrable Hamiltonian systems, this
has already been investigated in [5]. There it is shown that the interchange procedure
does indeed lead to a duality between the original integrable system and the constructed
one since the latter can also be shown to be integrable (e.g. the Henon-Heiles and Holt
Hamiltonians are shown to be related by just such a process [5]).
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